CXC chemokine receptor type 4 (CXCR4) / fusin

Catalogue no.: Q84 and Q85
Clone name: QX4-C2 and QX4-E11
Product: VHH directed against CXC chemokine receptor type 4 (CXCR4) / fusin

Target: The CXC chemokine receptor type 4 (CXCR4, UniProtKB P61073) is a 7-transmembrane spanning class A (rhodopsin-like) G protein-coupled receptor (GPCR). Binding of the chemokine CXCL12/SDF1α activates heterotrimeric Gαi, promoting cytoskeleton rearrangements and migration of e.g. immune cells to sites of inflammation. CXCR4 is important during embryonic development and regulates the homing and retention of hematopoietic stem cells in bone marrow. Upregulation of CXCR4 and CXCL12 contributes to the progression and metastasis of many tumor types. In addition, CXCR4 acts as a co-receptor for entry of HIV-1 and HIV-2 into cells.

Source: Recombinant monoclonal VHH (Llama glama), purified from S.cerevisiae using affinity chromatography. Immunization with CXCR4-containing nanodiscs and cells. Phage-display selection on captured CXCR4-containing lipoparticles with total elution.

Specificity: Human CXCR4. Q84 and Q85 bind to the extracellular part of CXCR4 and compete for CXCL12 binding.

Formulation: 0.2 μm filtered solution in PBS.

Storage: Shipped on blue ice. Store at 4°C or -20°C (aliquots). Addition of 0.02% sodium azide is optional.

Applications: ELISA, IF, FACS

Examples:

Binding of Q85 to CXCR4 in immobilized lipoparticles in ELISA, to CXCR4 on Jurkat cells in FACS or to CXCR4-YFP in HEK293T cells in IF. Docking of a predicted model of Q85 to CXCR4 (PDB ID 3ODU).

Products:

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Target</th>
<th>Tag</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q84/Q85</td>
<td>CXCR4</td>
<td>Tagless</td>
<td>No label</td>
</tr>
<tr>
<td>Q84c/Q85c</td>
<td>CXCR4</td>
<td>C-direct</td>
<td>No label</td>
</tr>
<tr>
<td>Q84c-lab/Q85c-lab</td>
<td>CXCR4</td>
<td>C-direct</td>
<td>Biotin / NOTA / HiLyte488 / IRDye800CW</td>
</tr>
</tbody>
</table>

References:
5. Jahnichen et al. (2010) PNAS, 107, 20565-20570
Bokov et al. (under review)